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I. Introduction

In this report, we summarize work done under NASA Contract
No. NAS1-15894 on advanced stability theory analyses for laminar
flow control. The report consists of six sections, of which the
last five are independent reports that summarize our progress on
different aspects of this work.

In Section II, we present a summary of our work on the
SALLY stability analysis code for compressible flow problems.

The resulting computer code seems to be at least an order of
magnitude more efficient than previously developed codes.

In Section III, we present a comparison of methods for
prediction of transition using the incompressible SALLY computer
code. It is shown that transition prediction by the envelope
method and a new modified wave packet method are comparable
in reliability but that the envelope method is more efficient
computationally.

In Section IV, we present a study of instability and
transition in rotating disk flow in which the effects df Coriolis
forces and streainse curvature on transition are iﬁvestigated.
Good agreement between the theory and experiments performed at
NASA Langley Research Center has been achieved using the eN method

with N of order 10 at the onset of transition.



In Section V, we present a new ‘'linear' three-dimensional
instability mechanism that predicts Reynolds numbers for
transition to turbulence in planar shear flows that agrees well
with experiment. We have extended the SALLY stability codes to
compute directly this new instability mechanism. The results are
in good agreement with experiment. Subcritical transitional
Reynolds numbers of order 1000 in plane Poiseuille and plane
Couette flow and of order 2000 in pipe Poiseuille flow have
been found.

In Section VI, we present results obtianed using our
stability analysis codes to sﬁudy the:finite—amplitude'(nonlinear)
stability of'axisymmetric ﬁipe Poiseuille flow. Our results
are in disagreement with the earlier analytical work of Davey,
Itoh, and Stuart. There appear to be no finite—amplitude
nonlinear axisymmetric instabilities, in contrast to théﬁ
predictions of the above-mentioned authors. The conclﬁsion

is that extreme care must be exercised in the application

of Landau-Stuart-Watson perturbation ideas to such flows.



II. Efficient Computation of Compressible Flow Stability of
Three-Dimensional Boundary Layers

In this section we present a method for calculation of com-

pressible flow stability of three-dimensional boundary layers.
The method is based upon a two point boundary value (direct)
approach and is more efficient than the commonly used shooting
methods (1, 2) by an order of magnitude.

The computer code SALLY (3) which was developed for LFC
(laminar flow control) design applications employed incom-
pressible stability theory. It is highly desirable to develop
a COMPRESSIBLE SALLY code which can be used as a design tool
.for LFC applications. One basic prereguisite for such a
code is a fast eigenvalue solver for compressible stability
ecuations which comprise of a system of eight first order
equations. The existing numerical methods generally use
Runge-Kutta integration procedure along with Gram-Schmidt
orthonormalization to control the parasitic error growth.

This procedure is often very slow and thus very inefficient
if used in a black box stability code such as SALLY. We de-
scribe here an efficient method for obtaining eigenvalues

of the compressible stability equations. This method will be
used in the compressible version of SALLY.

We write the governing eguations as

2 n .
(AD°+ BD+C) ¢= 0 (1)

n : _
where ¢ is a 5 row vector defined as

A\
¢ = (2)



and A, B, C are 5 X 5 matrices with the following structure:

1 0 0 0 0

A= 0 1 0 0 0
0 0 1 0 0

-0 0 0

| Byy B 0 0 0 )
B = J by, by, by, 0 0O (3)
( 0 by, by 0 0
0 0 0 by, 0
\ bgy bgy 0 0 by

0 c

11 12 14 S15
© " 0 Cp 0 Cp4 %35 '
0 C3p; C33 CS34 0
41 Sa2 0 44 C4s
%51 S5 0 C54 Cgs
In the ébove D.E d_ , where y is the normal boundar&_iayer‘

dy

coordinate and vV~ is the corresponding perturbation amplitude.
u’ and.w'.are the perturbation amplitudes in x and z directions
andva, B are the respective wave numbers. T" and P~ are the
amplitudes of temperature and pressure_fluctuations respectively.

The boundary conditions for Equation (1) are



(4)
y > i 9

In order to solve eigenvalue problems posed by Equations
(1) and (4), we represent Equation (1) by central differences
which results in a bloék—tridiagonal system of equations with
5 X 5 blocks. The system of equations is solved using Lu
factorization. We use inverse iteration procedure (4) for
eigenvalue search. This method is very effective once a
good guess for the eigenvalue is available because the con-
vergence 1is cubic.

If we write Equation (1) as
L ¢=20

then, the inverse iteration aléorithm for obtaining eigenvalue

can be written as
(L= D) oy g =

o

A R

_ T | T T
Ak 4+ 1 e o+ 1 0 %% 41 // e o+ 1 %% + 1

The finite-difference method presented above is second
order accurate. However, the accuracy of the eigenvalue ob-
tained by this procedure can be increased by Richardson's

extrapolation. For this purpose we use Neville's algofithm.

Iif

0 .
Pi Y= a (v (1 =0, couue m)



"where hi is the grid size, then

, p(3-1) L ()
i i+ 1 . .
) h. 2 i=0, ... mj
i
(__. -1
B4 (6)

We present here eigenvalue results for the leading edge
region (R = 150) of a 350 gwept back wing of infinite span.
Table 1 gives the eigenvalues calculated for different grids
(hi = %T)'and the extrapolated values. The sequence for
hi chose; is that proposed by Bulirsch and Stoer (5) which
gives an eigenvalue converged to five significant digits.
The cost of computation obviously depends upon the required
accuracy. Generally,an eigenvalue accurate to 3 significant
digits can be obtained in less than 2 seconds on Cyber 175.
Figure 1 shows eigen-function distribution for the same flow
as above.

Another way to increase accuracy is to use Chebyshev
spectral method (6). The spectral methods provide infinite
order of accuracy and are extremeiy desirable particularly

for high Reynolds number applications. Let us represent

Eguation (1) as

4"

Lsp¢ = f _ (7)

where Lsp is a spectral operator.
The direct solution of (7) by Gauss elimination methods

would require order N2 (N = number of points) and order N3



arithmatic operations. We describe here a method which permits
solution of (7) using order N storage locations with the number
of arithmétic operations 6f the order of N log N. Specifically
we use Chebyshev acceleration scheme (7):

n+ 1 _ , (n) _ (n-l):}
L, ¢ - L, [‘“n o™ 4 (a-u) o

(n)

- o w '(LS U - f) (8)

P
where Lap is an approximate finite-difference operator and wn
is a relaxation parameter. The error in the solution of

Equation (7) is decreased by a factor of 106 after about

9 iterations of Equation (8).
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RICHARDSON

EXTRAPOLATED EIGENVALUES

TABLE 1.

A== (0 = .2724,

g = - .2915)

20
40
60

80

120

160

-.2541052E~01

~.2514681E-01

~.2511236E-01

~.2510183E-01

-.2509352E-01

~-.2509100E~-01

.662266E~02

.6272069E-02

.6208798E-02

.6186852E-02

.6171322E-02

.6165936E~02

-,2505890E~01

~.2508481E-01

~.2508645E~01

-.2508751E-01

~.2503777E-01

.61535269E~02

.6153182E-02

.6153633E-02

.6153899E~02

+6159010E-02

-, 2508804E~01

~.2508700E~01

~-.2508786E-01

~.2508786E-01

615854GE-02

.6158786E~02

6158987802

.6150047E-02

-, 2500698E-01
F.2508797E~-01

. 2508786E~01

.6158802E-02
.6159012E-~02

.6159057E~-02

-.2508800E-01

.2508786E~01

.6159018E-02

+6159 060E~-02

. 25087 85E-01

.6159061E-02
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III. Comparison of Methods for Prediction of Transition by
Stabilitv Analysis ‘ '

ABSTRACT

Several methods of transitibn predictioh by
linear stability analysis are compared. The spectral
stability analysis code SALLY Vis used to analyze
flows over laminar flow control wings. It is shown
that transition prediction by the envelope method
and a new ﬁodified wave packet method are comparable
in feliability but that the envelope method is more

efficient computationally.

14
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NOMENCLATURE

maximum disturbance amplitude
Chebyshév coefficients

wing chord

dimensional Irequency

wave vector

algebraic mapping parameter
N-factor = fn A/A0
displacement thickness Reynolds number, UXG*/\)°°
chord Reynolds number, U  c/v,

arc length along an arbitrary path on the wing
Chebyshev polynomial

time

unperturbed x-velocity in thé boundary layer
potential-flow Véctor at edge of boundary layer
x-component of ﬁp

incoming free stream velocity

group velocity vector

perturbation velocity in the y-disection
unperturbed z-velocity in the boundary layer
mapped\éoordinate normal to wing surface
coordinate in the direction of the normal chord
coordinate normal to the wing sufface

coordinate along the wing span

15
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X-wave number

angle of attack
z-wave number
frequency
displacement thickness
wave length

kinematic Viscosity
wing sweep angle

angle formed by the wave number vector with the
x-axis

angle formed by the group velocity vector with
the x-axis

angle formed by the potential flow vector with
the x-axis

eigenfunction; defined in Eq. (3).



INTRODUCTION

In this section, several methods of transition orediction
using linear stability analysis are compared. The incompressible
linear stability computer cdde SALLY is used in various ways
td study three-dimensional boundary layer flow over laminar
flow control (LFC) wings. Here we compare the so called
envelope method1 with ane-packet methodéz,to predict
transition. We conclude that the envelope method is at
leasf as reliablé as the more complicated and less efficient
wave packet method.

Consider the stability of three dimensional laminar
flow over swept wings with sweep angle - g . The coordinate
system used on the wing is depicted in Fig. 1. The x-axis

is in the direction of the normal chord, the y-axis is

normal to the surface of the wing while the z-axis 1is

S . ~
along its span.
Neglecting the curvature of the wing surface,
compressibility effects, and non-parallel flow effects,
;inear disturbances satisfy the Orr-Sommerfeld equation
2 -_—
2 2,-2
L5 - o? - 8%%
ay -
2 2 2
L] ’ 2
= iR{ (aU + BW - w) [F5 - o® - 8219 - (@Y + ST} (1)
, dy dy dy

17



with the boundary conditions

$(0) = %% (C) = 0; ¢(») bounded. (2)
Here the perturbation velocity in the y-direction is assumed
to be of the form

i(ax+Bz-wt)]' (3)

v' = [Rel¢(y)e
U(y) and W(y) are the (unperturbed) laminar boundary
layer velocities in the x~- and z-directions, respectively,
and R 1is the Reynolds number. It is assumed that all

- variables are non-dimensionalized with boundary layer

scaling.
Equétions (1) - (3) constitute an eigenvalue
problem for the frequency w and wavenumbers a,B . g

For given Reynolds number R, this eigenvalue problem

provides a complex dispersion relation of the form
w = w(o,B) . , - . (4)

relating the complex parameters o,B and w. g

18



Semi~-empirical methods to predict transition on
LFC wings are based on tracing the evolution of modes
across the wing} An appropriate N-factor for transition
correlation is defined as the (logarithm of the) total
growth factor across the wing (see‘below). A good transition
predictor is one for which transition occurs at nearly constant
N for a wide variety of wings and flow conditions.:

For natural transition, disturbances of all frequencies
are presént on the wing surface. In this case, there are
many optioﬁal ways to compute N factors. The first choice
is between temporal and spatial stability theory. 1In
temporal theory, o and. B are real while o is complex;

" the mode grows in time if Im(w) > 0, but the mode does

not grow in space; An N-factor for transition correlation

- may be defined as

N = Js Im(w)/lRe(?rg)lds (5)
s

where 39 =(3w/3a, Sw/aB? is the (complex) group velocity
and s is the arclength along an appropriate curve on the wing.
The N-factor (5) is not fully defined until a prescription
is given for singling out a specific mode at each position
on the Wing and for definihg a specific curve on which, to
integrate. We shall return to these questions in Sec. 2.

In sﬁétial stability theory, o is“reélvbﬁt a)énd/or
B may be éomplex. Again,‘there is arbitrariness in the
definition of an appropriate N-factor because of the variety

of excitable modés on the wing.

19



- WAVE PROPAGATION IN BOUNDARY LAYERS

The complex eigenvalue relation (4) provides
two. real relations among the three complex quantities
a,B, and w. In temporal stability theory, the
requirements that .o« and B be real provide two more
conditioné so there remain two arbitrary parameters
émong Re(a), Re(B), Re(w), and Im(w).

There are several ways to remove this arbitrainess
in the computation of the growth factors N. In the
envelopé methodl, Im(w) 1is maximized with respect
to a at.fixed Re w [which then determines «a,B8
and w uniquely at each point on the wing] and the
curve in (5) is defined to be everywhere tangent
to Re(V).

S g

W;th spatial stability theory, there remains
tﬁfee in&ependent real parameters among o,B and
Re(w) once the eigenvalue condition (4) is satisfied.
One possibility is to require that the direction of
most rapid growth, which is parallel to the vector
(-Im{a), -Im(B)), Dbe parallel to Re($g) and that
the resulting value of the most rapid growth rate
be maximized with respect to the remaining two
independent parameters.

- Alternatively, it is possible to use wave

20



packet theory to remove the arbitrariﬁess in the definition
of N-factors. For a conservativé dynamical system,
kinematic wave theory implies that a wave packet

propagates in physical and ﬁavevecﬁor space according

4
to the Hamilton-Jacobi equations

2 . 2 | - (6)
E- B (7)
da_du (8)
B (9)

'Nayfeh' considered the extension of Egs. (6)-
(9) to non-conservative systems where a,8, and w can

be complex. Then, W, and may also be complex.

B

For a physical solution with real x,z, and t to
exist, (6) and (7) imply that the group velocity

(wa,mB) must be real. Nayfeh proposed the computation

—

of wave packet solutions determined by the six independent
conditions: (i) the eigenvalue condition (4);
(ii) Imw, = Im.m6= 0; (iii) Re w fixed; (iv)

Re B fixed; and (v) dx/dt =0 dy/dt = o Under

B.
these conditionsthe N-factor is determined by

21



t

N =/ [-w,Im(a)~w,Im(B)+Im(w)Jdt (10)
t
0

Finally we study a modified non-conservative wave
packet formulation in which ¢,8, and w are determined
by: (i) the eigenvalue condition (4); (ii)

Im w, = Im wB = 0; (iii) Re w fixed with Imw= 0; and

(iv) dx/dt = W, dy/dt wB . The motivation for these

latter conditions is simply that laminar flow over a LFC

wing may be assumed steady so a wave packet should propagate
at fixed real frequency. However, there is less justification
for assuming Re B is fixed as in Nayfeh's formulation,
because the flow is not homogeneous in space. The N-

factor is given by (10) with Im(w) = O.

With Nayfeh's formulation of the wave packet equations,
the growth factor N 1is a function of the indepéhdent
variables Rew and Re B , while N is a function of only
Re w in our wave packet formulation. Therefore,
maximization of N over all allowable packets is computation-
ally more efficient with our formulation. We have performed
computations (not reported in detail here) with Nayfeh's
wave packet formulation and have found the computations to
be extremely sensitive, with realistic solutions satisfying
the required constraints at some wing locations but not

at others and the overall N factor at transition highly

22



valuable. We do not believe these latter effects

originate in the numerical scheme. In any case, the conclusion
of the present paper that the envelope method is at least

as reliable as the wave packet method and that it is considerably
more efficient would not be changed by comparisons with

results obtained by Nayfeh's wave packet formulation.

NUMERICAL METHOD

In the computer code SALLYl, Egs. (1) - (2)
are solved using a spectral method based on Chebyshev
’polynomialss. The boundary layer direction vy
0 <y < e, is mapped into the finite interval

-1 i.w'< 1 by the algebraic mapping

w= 2 ;%E‘- 1 : (11)

and ¢(y) is approximated as the finite Chebyshev

polynomial series

¢(y) = nzo a - T, (w) | (12)

\

The resulting aigebraic eigenvalue problem is solvea
globally (if a guess for the eigenvalue is not
available) by a generalized QR algorithm or locally
(Lf a good guess is available) by inverse Rayleigh
iterations. The resulting scheme is very efficient

and accurate.

23
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The properties of the laminar boundary layer
profilés required to solve (1) - (2) are obtained using
a compressible boundary layer code for swept tapered

wings develcped by Kaups and Cebeci%

The code SALLY also performs a number of optional
computaﬁions, including: (i) computation of maximum
amplification among all wavelengths and propagation
angles; (ii) computation of amplification at fixed
frequency and fixed wave length; (iii) computation
of amplification at fixéd frequency and fixéd propagation
angle; (iv) computation of maximum amplification at
fixed frequency; and (v) computation of wave packet

solutions according to the prescriptions discussed

in Sec. 2.



RESULTS

Burrows7 has reported flight transition data
taken at Cranfield for a large, untapered, 45° swept
half wing_mounted as a dorsal fin upon the mid-upper
fuselage of an Avro Lancaster airplané. The airfoil
section was‘made—up of two semi-ellipses, one of which
constituted a faired trailing edge and the other
corresponding to the leading edge of a 10 percent
thick airfoil, with effective chord of 10.83 feet,
measured in the free stream diréction. The location
of the beginning of transition in the Cranfield data
was estimated as given in Ref. 8. Two of the Cranfield
flight rests were chosen for correlating £ransition
using wave pécket theory.

| In the first test case, calculations were made
for a chord Reynolds number of 11.7x10% ana -2°
angle of attack. In this flow, transition begins at
x/c = 5.5%. A maximum N factorlof 7.6 was obtained
‘at a frequency of 1250 Hz both with the envelope
method and the moaified wave packet method.

The predicted variation of the N factor up
to the trénsition location was almost identical for/the
' envelope method and the modified wave packet method.

We also éompute the solution of the conservative wave
packet eqﬁations (6) - (9) in which only the real

parts of equations (6) - (7) are taken while (8)-(9)

25



are solved in their full complex form. The resulting
N factor at transition is 5.2. The variation of N
factor with x/c for the various methods is pldtted

in Fig. 2.

Wave angle, wave length and the direction of
the group velocity as predicted by the eﬁvelope and
wave packet methods are given in Figs. 3 -5. Although
the results are qualitatively similar, there is
appreciable quahtitative difference in these parameters
at the transition location. It is surprising that the
N factor calculated by the envelope and modified wave
packet methods are the same.

In thé second test case, the angle of attack
of‘the wing was changed to zero. In this case,
transition occurred experimentally at x/c = 7%.

" The envelope method gave an N factor of 10.8 at

a frequency of 1000 Hz. The wave packet method gave
‘a maximum N factor of 10.5 at a frequency of

1200 Hz, which is close td the prediction of the
envelope methpd. The variation of N factor with

x/c isplotted in Fig. 6. The predictions of the
conservative wave packet approximation and a fixed
wavelength, fixed frequeﬁcy integration are also
plotted in this figure. The conservative wave packet
approximation gave an N factor at transition of

8.6 rather than 1.0.5.

26



Figure 7 shows the influence of frequency
on N factor at transition for the wing as
predicted-by the wave packet theofy. Wave angle,
wave length and direction of the group velocity
for this particular Qing are shown in Figs. 8-10.
. Again there is substantial quantitative,differénce in

the predictions of the two methods.

27



"CONCLUSIONS

Calculations were made for a Cranfield 45°
swept wing with Rec = 11.7 XI06 using a modified
_wave packet method and the envelope hethod. Both
methods gave an N factor of 7.6 at transition
location for an angie of attack, ap = - 2°. For
&y = 6°, the envelope and modified wave packet
methods gave N factors of 10.8 and 10.5,
respectively. Since it may be argued that the
wave packet method is physically more rele?ant for
predictiﬁg transition in three dimensional boundary
layers, it was initially hoped that the wave packet
method might éivé more consistent transition N
factors. Ho&ever, the results show that the wave
pécket method provides N factors which are at best
as Eonsistent as those of envelope method. Since the
wave packet method is at least 3 times as expensive
to use as the envelope method, the latter is recommended

for engineering design calculations.
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FIGURE CAPTIONS

Figure 1. A plot of the coordinate éystem on a swept
Qing. -

.Figure 2. A plot of N vefsus percent of chord
x/c for various methods applied to a swept wing
of an Avro Lancaster airplane at =2° angle of
attack. Solid curve: modified wave packet method

- and envelope method at f = 1250 Hz which gives nearly

the maximum N at the transition point. Dashed
curve: result of integrating equations (6) - (9)
across the wing with (6) and (7) replaced by
tﬁeir real parts. The curves are plotted from the
beginning of the unstable flow region until the
transition point at x/c = 5.5%.

Figure 3;"A plot of wave propagation angle versus
x/c for the same flow as in Figure 2.

Figure 4. A plot of wavelength versus x/c for the
same flow as in Figure 2. |

Figure 5. A plot of the direction of the group velocity
for the same flow as in Figure 2. B

Figure 6. Same as Fig. 2 except for the wing at 0°
angle of attack. In addition to the results of the

wave packet methods and envelope method, the N
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factor obtained by integrating a fixed

wavelength, fixed frequency mode across the wing is
éiven. Here N is given by (5) and the mode is.
- determined by the six real conditions: (i) Eq. (4);

(ii) Ima= -ImB= 0; (iii) A/c-= 0.001; (iv)
Re w= 750 Hz. |

Figure 7. Variation of N at transition versus
frequency obtained using*the modified wave
packet method for the same flow as in Eigure 6.

Figure 8. A plot of wave propagation angle versus
x/c for thé same flow as in Figure 6.

Figure 9. A plot of wavelength versus x/c for the
same flow as in Figure 6.

Fiéure 10. A plot of the direction of the group

velocity for the same flow as in Figure 6.

31 7



1 musmﬂm_qn

43



WAVE PACKET AND
ENVELOPE METHOD

(f =1250 Hz!)

e “NCoNSERVATIVE !
WAVE PACKET METHOD

X/C %

Figure 2.

33




V=¥,

100

80

70 |-

60

50

20—

ok

90

— WAVE PACKET METHOD

———- ENVELOPE METHOD

~

Figure 3.



(A/C)x 10°

25

2.0

o

1.0

- 05

——— ENVELOPE METHOD

— — WAVE PACKET METHOD

Figure 4

35




10

s

WAVE PACKET METHOD
——— ENVELOPE METHOD

- 36

N
(6]

2 3
X/C %

Figure 5.




12

10

— WAVE PACKET METHOD (f =1000 Hz)
—— WAVE PACKET METHOD (f ={200Hz)
——— ENVELOPE METHOD (f = ICO0Hz)

=== CONSERVATIVE WAVE PACKET

METHOD
—-= FIXED WAVELENGTH AND FREQUENCY
METHOD
1 ! ! !
3 4 5 6
X/C %

Figure 6.

37




2 —r—r—r— T
oF -
8- J
.4—. | i
2} -
,; 1 i 1 i | ) 1 1 1

) 600 800 1000 - 1200 1400
" f (Hz) | | |

Figure 7.

38



haad ¥

100

80

20

—— WAVE PACKET METHCD
——= ENVELOPE METHOD

1 | 1 R L

3 4 5 6
X/C %

~ Figure 8.

39




(T
1

30

25}

o
I

(N/C)x10°

o)
1

—  WAVE PACKET METHOD
——— ENVELOPE METHOD

40

Figure 9.




10

-6 |- |
-8} i
10 - —_ WAVE PACKET METHOD |

| ——— ENVELOPE METHOD -
1 i 1 1 :
0 3 4 5 -6 7

- X/C% |

Figufé 10.

41"



IV. Instability and Transition in Rotating Disk Flow

- ABSTRACT

The stability of three-~dimensional rotating disk
flow is investigated, including the effects of Coriolis
forées and streamline curvature. The results show that

the critical Reynolds number for establishment of

stationary vortex flow is Ry = 287. These vortices

spiral outwards at an angle of about 11.2° and
transition to turbulence occurs when their total
amplification is about el;, We also report new
experimental results on the spatial growth rates of
the stationary vortices. It is shown that our
analysis gives growth rates that compare much better
with the experimental results ﬁhan do results obtained
using the Orr-Sommerfeld equation. Our calculations

also indicate the existence of weakly unstable propagatlng

(Type II) mcdes at low Reynolds numbers (R = 49).
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1. - INTRODUCTION

The prediction of transition in three dimensional
boundary layers [1-3] 1is a subject of both fundamental
and practical importance in‘fluid mechanics. Practical
interest in the_sﬁbject centers on the design 6f laminar
flow control (LFC) wings that promise significant
improvement in airplane fuel efficiency. At present,
the most useful tool for transition prediction in such
flows is the so-called eN method [4]. Hefner and
Bushnell [5] and Malik and Orszag [6] show that
the exponent N (called the N factor) is of the
order 7-11 when transition occurs on LFC swept
wings. |

The instability mechanism exhibited in the
leading edge region of a swept wing is similar to that
found in the boundary layer on a rotating disk, since
both have mean cross flow vrofiles with inflection
points. More details on the similarities between the
two flows is given in Ref. [7]. However, the rotating
disk flow is more convenient to study in view of von
Karman's exact steady solution of the Navier-Stokes
equations [8]. |

Using hot-wire techniques,Smith» [9] observed that
sinusoidal disturbances appear in a rotating disk boundary

layer at sufficiently large Reynolds number. About 32
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oscillations were observed within a disk rotaﬁion period
and analysis indicated that the diSturbances propagate at
an angle of about 14° relative to the outward drawn radius
(where the directibn of disk rotation defines positive
angles). Later, in a remarkable study using the china-
clay technique, Gregory et al [10] observed about 30
vortices over the disk spiréling outwards at an angle

of about l4o;(thatmié,_their normals make an angle of about
14° with the outward drawn radius). These vortices, which
appeared stationary relative to the rotating frame of

the disk, were first observed at a Reynolds number R =430

C
[where R is defined after (2.14) below]. Transition

- to turbulence occurred at R.,* 530. The overall conclusions

T

drawn by Gregory et al have been confirmed in later
investigations [11,12]. It has been found that there

are about 30 _stationary vortices whose normals make an

angle of 11° - 14° with the radius. However, there seems

to be considerable controversy over the value of the

critical Reynolds number which in our view can be attributed

to the measurement techniques used. Further, at low

Reynolds numbers, Fedorov et al [13] observed only 14-16. -
vortices with normals lying at an angle of about 20°.

Stuart [10] analysed the linear, inviscid

stability of rotating disk flow. However, the neglect of



viscosity resulted in the prediction of 113-140 vortices
over the disk which is about four times larger than the
observed value. Brown [14] extended Stuart's work to the

viscous case by applying the Orr-Sommerfeld equation to disk flow.

Using temporal instability theory, Brown found RC = 178,
which is much less than the observed value. Recently,
Cebeci and Stewartson [3] solved the Orr-Sommerfeld

equation for rotating disk orofiles using spatial stability

theory and found R, = 170. They also suggested that
wave packets propagate in three dimensional flows in such
a way that do/dB is real. Using this condition, Cebeci

and Stewartson correlated transition using the eN‘ method

510) to be

and found the N factor at transition (RT
about 20 which is much higher than that found for LFC

wings. ([5],[6]). Bushnell (private communicatibﬁ)'argues that

a higher N factor may be required for transition in disk flow than
on LFC wings because the boundary layer is rotating with

the disk while the external disturbances in the surroundings

are not. Consequently, there is no.direct coupling between

the external disturbances and the instability waves in the -

rotating disk boundary layer.

The Orr-Sommerfeld stability equation neglects
the effects of Coriolis forces, streamwise curvature, and
nonparallel flow. In Ekman layer flow, Lilly [15] has

shown that the Coriolis force has a significant effect on
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stability at low Reynolds numbers. Lilly showed thét the
criiical Reynolds numbef for appearance of stationary
vortices is higher .(RC = 115) when the Coriolis

force is included in the analysis than when it is neglected
 (RC = 85). 1In addition to the stationary vortices,

he showed the existence of a parallel instability caused
by the Coriolis force at much lower Reynolds numbers.
Such an instability mechanism was also observed in the
Ekman'layer experiments of Faller and Kaylor [16] and
Tatro and Mollo-Christensen [17]. The Ekman layer and
the rotating disk are similar in that both are three-
dimensional boundary laver flows in which rotation plays
a significant role. Lilly's results suggest that the
inclusion of the Coriolis force in the stability analysis
of rotating disk flow may also lead to a higher critical

Reynolds number for stationary vortices which is in better

agreement with observations.

In this section we present a stability analysis of
rotating disk flow in which the effects of Coriolis force
and streamline curvature are included. The‘resulting
sixth order system is solved numerically by a Chebyshev
spectral method [18-19]. We also follow the evolution
of the disturbance modes ﬁsing the envelope method

[1,6] and calculate the N factor at transition.
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The work of Kobayashi et al [12], which aﬁpeared during
the final stages of the present study, also includes the
effects of the Coriolis force and streamline curvature.
We will comment on this work in Sec. 6. |

We al;o report results of an’experimental investigation
of rotating disk flow in which the growth rafes of the
boundary layer disturbances were méasured using a hot-wire
probe. While only limited experimental results are now
available, the agreement with the present theoretical
analysis seems encouraging. We know of no previous

experimental study in which growth rates were measured.
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2.. THEORETICAL ANALYSIS

Consider an infinite plane disk rotating about
its axis with angular velocity @ . We take cylindrical
coordinates r*,0,z* with 2z* = 0 being the plane of
the disk. Assuming the fluid to lie in the half-space
z* > 0, the governing dynamical equations ére, in the

rotating coordinate system,

' 2
su* % ou* . v* gu* x ou* _v*™ 1 3p*
at* +tu or* + r* 2386 *ow 3z* r* p or*
+ v(azu* + 1 82u* + azu* + j% au:
ar*?  px? 552 ggx? IF 9T
* * .
-2 0E_8hy 4 pqur 4 e g2 (2.1)
r* r*
ov* % OV¥ v*¥ av¥ x OV¥ u*v* 1 3p*
sex T U aew T oF e T YT 5z ¥ oT* 30
+ v(azvz + 12 SZV; + azy; + gV: + 22 gu* _ v*
ar¥* r* 36 dz* r r r* 36 r*~
- 2Qu* (2.2)
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*
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*

* — * . = - o

ot* +u axr¥ + r*¥ 30 o az* p 9z*
2 2
dwx 1 3 w* 3 “w* 1 3w*
+ v 5 F 5 5+ 5 + ar*) (2.3)

ar* r* 90 dz* :
au* 1 3v* dw* u*
50F T ¥ 56 Tt azF T rF = O (2.4)

where (u*,v*,w*) are the velocity components in the
(xr*,8,2%) direétions; respectively, p* 1is the pressure,
p is the density, and v 1is the kinematic viscosity.

Von Karman's exact solution of (2.1) - (2.4) for
steady laminar rotating diék flow is obtained as follows
[8]. Let u,v,w, and p denote the‘steady state values

of u*,v*,w*, and p* respectively. Defining
U = r*QF(z), Vv = r*QG(z), w =/ViH(z), p =pvap(z), - (2.5)

| * i3 *
where z=z /Q/v then the Navier-Stokes equations (2.1) -
(2.4) reduce to the following equations for F,G,H and

P:

P2 - (G+1)% + F'H - F" = 0 (2.6)

OF(G+1l) + G' H - G" = 0 | | (2.7)

49



P' + HH".-— H" = 0 - ' (2.8)
2F + H' = 0 : - (2.9)

where the prime denotes differentiation with respect to

‘2. The boundary conditions are

" F=0, G=0, H=0 at 2z =0

(2.10)
F=0,G=-1 for z + o«
Now we study the evolution of infinitesimal small
disturbances imposed on the steady flow governed by
*
Egs. (2.5) - (2.9). Let r, be the radial location near
A : * -
which the analysis is to be made. Using reQ as the
reference velocity, &* = VV/0 as the reference length,
and pri Qz as the reference pressure, the perturbed
nondimensional velocities u,v,w and pressure p can
be written as
u(r,8,z,t) = g F(z) + f(x,0,z,t) (2.11)
v(r,8,z,t) = £ G(z) + v(r,6,x,t) (2.12)
w(r,8,z,t) = = H(z) + @(r,8,2,t) (2.13)
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p(r,g,z,t) = —lz- P(z) + p(r,,z,t)
' R

Here the nondimensional radius is

r = r*/Q/v, the Reynolds
* *
number is R = T /Q/v, and r corresponds to r = R,

: Substituting Egs. (2.11) - (2.14) in the Navier-
Stokes equations (2.1) - (2.4) and linearizing with
respect to the perturbations gives:

3 . r 9% Gl , Hau  F_ 2 e LEe
3T + R F or + R 58 + R 52 + g U R (G+1) v + T W
_ (2.15)
~ 2~ 2~ 2~ - a~ Y
=-20,1 3w, 1 3%, 9u,1lou 2 23v_ d,
= 2 2 2
3r R 3r2 r2 862 3z r 3r r2 96
YV L L pdV  G3Y  HAV  Fo o, 2 n+ L g
£t R F 5T + R 5 tRgap t RV tg (G+1) + 5 G'Ww |
(2.16)
__ 1.1 9%, 1 3% . 8% . 19% 2 s %
"ry tRUL 2T I 2t T3ttt S5 - 5
or r’ 3 3z r r r
aWw , r p 3% , G 3w  H W  H' o
5t TRESY TR TRIZTRV
(2.17)
=—&é+l[ﬁ+lﬁ+£ﬂ'+lﬁ]
3Z R 8r2 2 892 52 ¥ 0T
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<R
%)
X

Ric:

TRET =0 (2.18)

[o3-0 2o %)
mle
4
R
l
+
|
+

~

The boundary conditions are that 1u,V, and W vanish
at z = O,m. |

For‘ R>>1, the system (2.15) - (2.18) may be
coﬁsiStently approximated by replacing factors of «r
by R and neglecting terms of order R_2 and smaller.
The replacement of r by R at this stage of the

~ calculation implies that we neglect Ssome nonwarallel flow

effects. These effects are now under study. The neglect
of terms of order R"2 and smaller has little effect on
the results discussed below, as we verified by computations
in which they were included. |

Replacing factors of r bv R in (2.15) - (2.18)
gives a set of equations that are separable in r,0,t
so that the perturbation quantities may be assumed to

have the form

i(or+gRo-wt)

~.

(9,%,%,D) = (£(2),h(z),4(2),7(2))e (2.19)

With this assumption, Egs. (2.15) - (2.18) becore (not yet

dropping terms of order R-ZY

2

i(aF+8G-u) £4F'¢ + darm = = [£"-2%f = Ff + 2(G+1)h - BE']

[iaf - 2i 8 h]- =
R

+ £ (2.20)

2 3

o L
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2 -Fh-2 (G+1) f=Hh"']

+ 4 [iah + 208f] - 2. (2.21)
3
R R

i(aF + BG-w)h + G'¢ + ipm = % [h"-)

LlaF + 8G-w) ¢+ m' = & Lm=a T+ Dy w0 (2.22)

(ia+%)f + igh + ¢°

|
(=)

(2.23)

where Az = az + 32.

Eliminating 1w from (2.20) - (2.22) by means of

(2.23) gives, neglecting terms of order R—2 and smaller,

[1(0%-2%) (0®-X?) + R(aF+8G-w) (D?~X?) - R(IF"+EG")~1HD (D2~X?)

-1l

- ig' (D?-%?) - iFD2]¢+%[2(G+l)D +26'Tn =0 (2.24)

1 .
R [2(G+)D-iR(aG'-8F") ] ¢+ll§[i(02—xz) + R(aF+8G-w) - iHD = iFIn= 0

(2.25)
— . =2 - 2
and where D = d/dz, o = ao-1i/R,A" = aa+ B and
n = ah - Bf isproportional to the z-component of the
perturbation vorticity. The final result (2.24) - (2.25) is a con-

s - L 1 . . -1
sistent set of stability equations valid to order R .
The boundary conditions for the sixth order system

(2.24) - (2.25) are

53



n(0)

$(0) = ¢'(0) = =0
(2.26)
9(®) = ¢' (=) =n(=) =0
Note that if the Coriolis force and streamline
curvature effects are neglected, the above system
reduces to the fourth-order Orr-Sommerfeld equation;
[1(0°-2%)? + R(aF 48G-0) (D?-12) - R(aF"48G") 14 =
(2.27)

In Sec. 6, we report numerical results for both the
sixth order system (2.24) - (2.25) and the fourth order
equation (2. 27) in order to study the effect of Coriolis
force and streamllne curvature terms on the stablllty of

flow due to a rotating disk.
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3. NUMERiCAL METHOD
We solVé the drr;Sommerfeld equation (2.27) in
.the computer éode SALLY [l1] by using a spectral method
based on Chebyshev polynomials[lS—lQ].Here we extend the
method to solve the sixth order s&stem (2.24) - (2.26).
The boundary layer coordinate z, 0 <z < o is
A mapped into the finite interval - 1 <g&<1 by the

algebraic mapping
£ =22 -1 S | (3.1)
where L is a scale parameter chosen to optimize the

distribution of points in g.  Then ¢{(z) and n(z)

are approximated as the finite Chebyshev polynomial

series
) M _ .
¢ (z) = néo a T (&) (3.2)
M
n(z) = § b T, (z) (3.3)
n=0
Substituting (3.2), (3.3) in (2.24) - (2.26) and

collocating [19] at the discrete points gj = COSs wj/M

(0 < j < M) gives the algebraic eigenvalue problem,

a a : : .
A { n} = B { n} (3.4)
b_ b
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where A and B are 2(Mrl) x2(mrl) matrices; The
eigenvalue problem (3.4) is solved globally (if a
guess for an eigenvalue is not available) by a generalized
OR algbrithm or locally (if a good guess is available)
by inverse Rayleigh iteration [20]. The resulting scheme
is very efficient and accuréte. In the present
calculations the optimum value of thé scaling parameter
L was found to be about 1;8. In most of the calculations
reported below, M= 34 so 35 Chebyshev polynomials were
used.

The‘accuracy of the method was tested in several
ways. First, the number of reﬁained polynoﬁials, M+ 1
was varied to check the accuracy of the eigenvalues and
eigenfunctions. Then, calculations were made for the
stability of Ekman flow. Comparisons were made with the
results obtained by Lilly [15] fof R = 65, 110,
I50, 300 and 500 with good agreement.

For rotating disk flow, the global method gives only
one unstable eigenvalue [Im(w) >0] for R>150 that
is insensitive to M. However, spurious unstable modes
appear for lower R which are discarded as unphysical

because they are very sensitive to M.,
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N
4.. TRANSITION PREDICTION USING THE e'] METHOD
In three dimensional flow, the dispersion relation

is given by the complex relation
w = wla,B) o (4.1)

where o,8, and w are, in general, complex. Therefore,
there are four arbitrary real parameters amongv 0,8 and

‘w. There are several ways [6] to remove this arbitrariness.
In thg present study we employ the envelope method ([1].

Here the four conditions are obtained by using temporal
stability theorfi[in which Im{)= Im(B)= 0] and by
maximizing Im(w) with respect to «a,B at fixed Rel(w).

The N factor is then given by

St
N= —Imlw) g ' (4.2)
S | Re(vg)l

.where $g = (wa'wB) is the (complex) group velocity and

s 1s the arc length along the curve whosé tangent is the

real part of the group velocity. Noting that

_ dR 2 2 dR >
ds = ReTEZT' VQRe(ma)) +(Re(w8)) = ReTB;T l RE(Vé)l .
Eq. (4.2 can be written as
R - .
T
: Im(w)
N = [ 20 g (4.3)
R Re(wa) ‘

Cc

Here the subscripts C and T indicate critical (linearly
unstable) and onset of transition, respectively.
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5. EXPERIMENTAL STUDY

An experimental program was established to quantitatively
study the flat rotating disk flow with particular attention
given to measurement of the growth o0f boundary layer disturbances
as a function of Reynolds number. = The experimental set-up
is described along with the measurement techniques.
Meésured mean velocity profiles are compared with the exact
solution aﬁd an analysis of mechanical disk vibrations is
presented.

Rotating Disk Apparatus

The experimental apparatus is shown schematically
in Figure (l1). A 457 mm diameter, 12.7 mm thick Plexi-
glass disk was attached to a 50.8 mm diameter aluminum
shaft by means of two parallel aluminum mounting disks.
Shim stock inserted at various circumfrential locations between
the mbunting disks was used to control alignment of the
Plexiglass disk and to compensate for asymetrical flexure
of the Plexiglass introduced by mounting stresses. The
drive shaft was inserted between twd pre-mounted, self-
aligniné ball bearings and was driven by a 1/4‘ Hp, 1725

RPM AC motor through a 2:1 belt and pulley speed reduction
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system. The test surface of the élexiglaés wés hand
‘ground on a surface table to a flat, near-qloss finish.
Static ﬁg§§gﬁgmenﬁgﬂwith a dial indicator showed_the
disk to have a +/- 0.008 mm_deviatiqﬁ_from a flat plane.
The assembly was housed in a 1.8 m_cubical box with an
open front. The radial flow at the disk periphery was
ducted behind the disk by placing a 1.8'm square cover
several boundary layer thicknesses in front of the disk
with the test surface exposed by a large hole of slightly

smaller diameter than the disk.

Hot Wire System

A single constant temperature, linearized hot wire
was used for all measurements. Wollostan Pt-10Rh 0.0025 mm
wire with an active length of 1.0 mm was used. Calibration
was done in the entry region of a duct flow at room temperature
with the wire and prongs in the same orientation with
respect to the flow as during the boundary layer measurements,
bFor measurements, the wire was placed parallel to the disk
surface with the wire axis along a radius. The wire was
fixed in space while the disk boundary layer rotated past
it. P

Response of a Single Hot Wire in a Three-Dimensional Disk Flow

A single hot wire parallel to the disk surface with the
wire axis along a radius will indicate a mean velocity having

the magnitude of the vector composed of the axial and tangential
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components of the flow. In non-dimensional terms, the
ratio of this magnitude to that of the tangential component

is given by:

I H .2 1,1 H .2
Vi+ i i1 e} ® 1oy (5.1

.:!‘.(_]:_ _____.H )2
2'R (G+1)

will provide an excellent estimate of the actual tangential

Provided that the term is small, the hot wire.
velocity distribution. For the current experiment, the
minimum valué of R was 125. For this case, Eq. (.5.1)
shows that the discrepancy between the actual tangential
velocity and the quantity measured by the hot wire is less
than one ?ercent for all G>-0.95 or over approximately
the inner 80% of the boundary layer thickness. Since the
outer region of the boundary layer is characterized by
extremely low velocities for which measurements are inherently
inaccurate, no correctiohs were made to the measured profiles.
To verify that a well behaved disk flow was present, the

mean tangential velocity distribution was measured at

several Reynolds numbers. Results are shown in Figure 2. _
The prdfiles for R = 251, 374 are in good agreement

with the exact solution (see Egs. (2.6) - (ZflO))' The
distribution at higher Reynolds numbers Reynolds numbers

is expected to deviate from the exact solution due to the

presenée of the highly amplified stationary vortices. Even
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then, the effect of the stationary vortices on the mean
flow is found to be largely confined to the outer region

of the boundary layer.

_ Measurements of the fluctuating components of the flow

were made in order to determine theé growth rate of the stationary

disk disturbances. The theoretical formulation of thev
problem assumés the same growth rate Imw for the three
velocity components. Therefore, any arbitrary combination
of the components will also have the same growth rate.

The single hot wire responds to the axial and tangential
components of the flow. The growth exhibited by the

hot wire can, therefore, be used for comparisons with
theoretical predictions. The experimental growth rates
will be compared with the theoretical‘predictions in

the next Section.

Mechanical Disk Vibrations

Due to the large velocity gradient near the disk surface,
any displacement of the disk surface relative to the hot
wire will modulate the anemometer output. Low freguency
displacements due to.the static or dynamic deviation of the -~
disk from a flat plane are easily recognizable since they
modulate the signal at a freguency corresponding to some small
multiple of rotational frequency. Figure 3 shows that
static deviation of the disk consists of four undulations
in the surface. Figure 4 is a plot of the hot wire
output at R = 457 and G = - 0.5 for one revolution of

the disk. The signal was bandpass filtered in the range
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250 < f < 600 hz, however, the envelope of the signal
roughly corresponds to the‘disk surface undulations and
thus partially accounts for the modulated output.

Other sources of vibrations were the ball bearings,
drive system,and structural resonances of the disk support
stand. These vibrations were of very small amplitude and
were noted to occur in the‘same frequency range as the
paséing stationary vortices. Thesé vibrations are critical
-when measuring disturbances in regions of low fluctuation intensity._
To show the effect of these vibrations, the displacement of
the center of the disk was monitored with a proximeter
and the spectrum of these vibrations’waé compared to that of
the hot wire output at R = 125 and G = -0.5. The
vibration data was converted to apparent velocity fluctuations
by using the calculated v(z) velocity gradient at the hot
wire location. It was assumed that the vibrations at the
center of the disk were very similar to those at the hot
wire location. Results are shown in Figure 5 . (Both
sets of data were bandpass filtered in the range 250<£f<600 Hz).
The plots show that the hot wire output can be largely
attributed to the disk vibrations. Since the vibrations
were in the same frequency range as the stationary vortices,
the hot wire data at low intensities could not be used to
indicate the amplification rate of the stationary disk
disturbances. This also eliminated the possibility of
experimentally determining the critical Reynolds number for

the stationary disturbances.
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6. RESULTS AND‘DISCUSSION

Critical and Transition Reynolds Numbers

Some of the available experimental data for critical
~and transition Reynolds numbers are given in Table 1.
It is apparent that there is considerable variation of
the observed critical point. We believe that the
variation can be attributed to the different measurement
techniques used in the experiments. Using the Orr-
Sommerfeld eéuation, we obtained a critical Reynoids
number R, =~ 171 which isiilgood agreement with the
theoretical results of Brown [14] and Cebeci and
Stewartson [3] but is considerably less than the
observed values. The value of the critical Reynolds
number for stationary vortices is significantly improved
when the effects of Coriolis forces and streamline
curvature are included. Our calculatéd critical
Reynolds number of 287 is in excellent agreement with
the value of 297 obtained by Kobayashi et al [12]
using hot-wire teéhniques. Kobayashi et al [12] also
performed a theoretical analysis in-which some of the
effects of Coriolis forces and streamline curvature were
considered. They calculated a critical Reynolds number
of 261.

In order to correlate transition using stability
theory, one has to know the experimental location of
the onset of transition. The transition Reynolds
numbers usually given for experiments (see Table 1)
are the locations where transition is complete.
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Gregory and Walker [21] showed  that, fdr a slitted rotat-
ing disk, the transitioh region is composed of two
subregions: (i) a vortex region and (ii) an inter-
mediate turbulent region where the intermittancy factor

Y varies from 0 to 1. Stability theory is only
applicable up to the point‘where the first turbulence
burst appears (y = 0). Gregory and Walker obtained

R = 505 and 524 for y=0 and y = 1, respectively.
Chin and Litt [23], wusing an electrochemical technique,
observed that the transition was complete at R = 592.
They also observed that the vortices start breaking

down into turbulence ét RT= 510. We believe that this
result should be taken as the relevant location for the
onset of transition for the purposes of comparison

with stability theory. Further evidence that the initiation
of transition occurs at RffSlO is provided by Kobayashi
ét al who observe that the disturbances are non-linear

at R = 500. Usually the non-linear region is narrow

so the onset of transition soon fbllows. Further, Federov
et al [13] observed turbulent flow at R = 515. On

the basis of all this evidence we take RF 510 as the
location of the onset of transition.

Growth of Infinitesimal Disturbances

Disturbances of all frequencies may be present in
natural transition. We follow the evolution of several

different modes and the one which gives the highest inte-
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grated growth factor is used to cérrelate tfénsition.
Stationary disturbances were found to give the highest

N factor for rotating disk flow over all positive real
frequencies. Disturbances with negative phase velocities
can givé slightly higher N factors but they are of

no consequence in the process of transition.

It waé shown in [6] that envelope method is a
feliable tool for transition prediction in three
dimensional flows. First, we feport calculations using
the Orr-Sommerfeld equation. The resulting N factors
are compared with those of Cebeci and Stewartson [3]
in Figure 6. It is evident that their method predicts
N =20 at transition (R = 510) while the present
(envelope) method gives N =22 at transition.
Cebeci and Stewartson [3] wused spatial stability
'fheory and in order to remove arbitrariness among the

parameters of equation (4.1), they imposed the condition

=t =0 : (6.1)
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where ai_;.Im(u), Br = Re(B). In order to simplify
their computations, Cebeci and Stewartson assumed that the
‘maximum growth rate at any R>R, is independent of

the growth direction. This condition is not

realistic and we believé.fhét had their growth rates

been maximized‘over all possible growth directions their
N factof at transition would be in better agreement with
the present predictions using the Orr-Sommerfeld

equation.

In Fig. 7 we plot calculated temporal growth rates
(Im(w)) for stationary vortices. It can be seen that
the inclusion of streamline curvature and Coriolis
forces have a significant stabilizing effect. Calculations
with only Coriolis terms (as done by Lilly [15] for
Ekman flow) were also made. These results indicate
that streamline curvature effects must also be inciuded
in order to model properly the physical problem.

Since the instability is spatial in nature, we
transform temporal growth rates to spatial growth rates

o using the group velocity transformation

_ _Im(w)
= ﬁETG;T (6.2)
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The spatial growth rates are plotted in Figure 8
together with experimental data. Except for the data
at low fluctuation intensity and for data in the |
turbulent breakdown region, the agreement with the present
stability analysis is good. ‘

Integrated growth rate (N factor) results are
presented in Figure 9. The present stability theory
gives N = 10.6 which is close to the value N = 9
for two dimensional flows and is in the range of values
found for swept wiﬁgs [6]. It ié apparent that there
is a very significant effect on the predicted transition
N factor when the effects of Coriolis forces and stream-
line curvature are included. The resulting N factors
are much more reasonable than those obtained by conventional

stability theory where only the Orr-Sommerfeld equation

is solved.

Also presented in Figure 9 are experimental results
for the N factor. The experimental amplification rate
of the stationary vortices was determined from the rms spectra"
of the bandpass filtered hot wire output. The rms
voltage in a narrow band centered on the frequency. (438 + 8 Hz)
. of the stationary vortices being swept past the probe was calculated
for each Reynolds number. The N factor was based on this

rms level relative to the local disk velocity. Due to the
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problem with disk vibrations indicated earlier, it was
aésumed that AO = 1 and the resultant data were shifted
at constant Reynolds number to match the theoretical growth
curve. The data are seen to be in a fair agreement with
the present theory over the range 400<R<500. The significant
deviation of the data for R <4OO is attributed té disk.
vibrations. The falling off-of.the data for R > 500 is due
to the highly non-linear nature of the flow in this region
and breakdown to turbulence. |

Although shifting the level of £he data because of uncer-

tainty in the value of A, can be questioned, the fact that the

0
slope of the experimental curve (¢ = dAN/dR) matches the present
theory (see Figure 8) in the range 400<R<500 is very encouraging.
With recent advances in rotating equipment technology, it may be
feasible to build a disk drive system with low'enough vibration
amplitudes in the frequency range of interest to allow an.experi-
mental estimate of AO to be made. Work investigating this
possibility is now underway.

The absolute value of the fluctuation intensity is plotted

in Figure 10. The intensities for the range in which the growth

rate agrees with the theory is seen to be from 0.1% to 10%.

—
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Orientation and Number of Vortices

In the envelope method we maximize growth rates
Im(w) for stationary vortices over all possible wave
angles. We find that the vortex spirals make an
angle of 11.2° with the negative of the direction
‘of disk rotation. This is in excellent agreement with
“the experimental value of 11-14° [10-13].
It can be shown that the number of vortices

is given by
n = BR {(6.3)

where g is defined in (2.19).

Gregory et al [10] observed about 30 vortices
in the range of Reynolds numbers range _430-530. At
R = 430, we obtain n = 0.0698 x 430 =30, which is in
‘excellent agreement with the experimental observation.

If the number of vortices is to remain éonstant then

B should vary as 1/R. Our calculations do not show
this behavior. 1Instead, B remains almost constant so
that n varies with R.

The continuous variation of n can not be justified
physically. However, it is possible that the number of
vortices does vary but not in a continuous fashion.

There is.some experimental evidence of bifurcation in which

n undergoes discrete jumps. Fedorov et al [13] observed
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30 Vorticés at R = 387. However at lower Reynolds numbéfs
(R = 180 - 245), they observe 14-16  Vortices. Linear
theory is unable to predict such bifurcation phenomena

.80 nonlinear theory may be needed.

Parallel or Type II Instability

Lilly [15] presented numerical solutions of the
Ekman layer problem and included the effect of Coriolis
forces in his analyéis. He found that at very low Reynolds
numbers an instability mechanism exists whose disturbances are
different from the stationary disturbances described
previously. Lilly called this "parallel instability" and
suggested that it is of viscous type since it vanishes
at high Reynolds numbers. He found that the critical
Reynolds number for these fast moving disturbances is 55
| ahd the resulting modes are oriented at small negative angles.
The orientation angle at the critical point is =-23°
which decreases in magnitude as the Reynolds number
increases. A similar instability mechanism was detected
in the experiments of Faller and Kaylor [16] (who called
it a type II instability) and Tatro and Mollo-Christensen
[171. | -

In our calculations, we also find travelling
disturbances (f~ 100 Hz relative to the disk) at low
Reynolds numbers. The critical Reynolds number for these
disturbances ' is calculated to be 49. The critical

parameters are

a = 0,27 B = -« 0.137 ©_ = 0.146

(6.4)
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This corresponds to a wave oriented at an angle of-26.9°.
These disturbances have much lower growth rates than the

stationary ones.

CONCLUSIONS

The growth of instabilities in the three dimensional
flow due to a rotating disk is studied both theoretically
and experimentally. The experiments‘show.clearly a
region of linear growth that is in good agreement with
linear stability theory that includes the effects of
Coriolis forces and streamline curvature. Therefore,
the eN method gives good results for transition

prediction in these three dimensional boundary layers

with N of the order 11.
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Table 1. Critical and Transition Reynolds Numbers for Rotating Disk Flow

Reynolds Number

Investigators

Smith [9] (1947)

Gregory et al
[10] (1955)

Cobb & Saunders
[23] (1956)

Gregory & Walker
[21] (1960)

Chin & Litt
{2771 (1972)

Fedorov et al
[13] (1976)

" Clarkson et al
[11]1 (1980)

Kobayashi et al
[12] (1980)

Present results

Critical Transition Onset of
Transition
{(estimated)
460 557 -

430 530 -

447 490 -

367 524 505

412 592 510

387 515 -

532-621 562-680 -

297 566 500 (non—
linear
oscillations)

287 - -

Method of
Investigation

hot-wire probe

visual
(China clay
technique)

heat trahsfer from
the disk

acoustical
slitted disk

mass transfer
coefficient using
electrochemical
technique

visual (Napthalene),
acoustical

visu ’
(dyea]in water)

hot wire probe

calculations using
stability theory
including Coriolis
force and streamlin
curvature effects
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- Figure 1.

Figure 2.

Figure 3.
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Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.
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FIGURE CAPTIONS
Disk system lay out - top view

Normalized mean tangential velocity profiles for the
Karman rotating disk flow

Measured deviation of disk surface from a flat plane
Time variation of fluctuation intensity

Comparison of disk vibration spectrum with hot wire
output. (a) Hot wire output (b) Proximeter

Integrated growth factor using Orr-Sommerfeld equation
(a) Present calculations '
(b) Cebeci and Stewartson [3]

Temporal growth rates for stationary vortices

(a) Orr-Sommerfeld equation

(b) Orr-Sommerfeld eguation with Coriolis force effects
“included

(c) Orr-Sommerfeld equation with Coriolis force and
streamline curvature effects included

Spatial growth rates for stationary vortices
(a) Orr~Sommerfeld eugation

(b) Present theory

(+) Experimental data

Integrated growth factor for stationary vortices
(a) Orr-Sommerfeld equation

(b) Present theory

(+) Experimental data

RMS intensity of velocity fluctuations as a function of
Reynolds number
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V.

Subcritical Transgition to Turbulence in Plane Channel
Flows - ' ’ '

While experimentsl show that incompressible plane
Poiseuille and plane Couette flow may undergo transition
to turbulence at Reynolds numbers R of order 1000,

linear stability analysis of these plane parallel flows

gives critical Reynolds numbers of 5772 for

plane Péiseuille flow2 and <« for plane Couette flow3.

Thié diScrepancy between theory and experiment suggests

that thé mechanism of transition is not properly represented
by parallel-flow linear stability analysis. In this Letter,
we present a new linéar three-dimensional mechanism that

predicts transition at Reynolds numbers in good agreement

‘'with experiment for both plane Poiseuille and plane Couette

flows. Here we present the theory applied to plane
Poiseuille flow, defined as flow between fixed parallel
plates that is driven by a pressure gradient.

We begin by studying two-dimensional travelling-wave

solutions to the Navier-Stokes equations:
V(x,z,t) = F(x-ct,z) (1)

where ¢ 1is a real wave speed, x is the downstream
coordinate and 2z 1is the coordinate perpendicular to the
channel walls at =z = *1, No-slip boundary conditions are
applied at the walls and 27n/0 periodicity in x is assumed.

For all R , one solution is the laminar flow (1—22), where
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R= 1/v and v islthe kinematic viscosity. For R > 2900,
up to 2 other solutions (neglecting an arbitrary phase)
may exist for any given o .4 The locus of points in

(E,R,a) space for which these solutions exist is called
the neutral surface. Here E is the energy of the flow
relative to that of the laminar flow. A slice of the
neutral surface for given subcritical Reyﬁdlds number

(290C< R <5772) is shown in Fig. 1.

If a one-dimensional phase space repfesentation were
appropriate to describe the behaViorgof flows off the neutral
surface, E would evolve according to |

dE

T =@ L. @

Typically the critical points of (2) are alternately stable

and unstable, so the lower branch (LB) solutions on the

w;&bcfitiééi‘héugfél éﬁfféée plottédwiﬁ éié. i"é£evﬁn§£ébiéw
while the upper branch (UB) solutions are stable.

While these stability predictions are correct, the
evolution of two-dimensional flows is not restricted to a
one-dimensional phase space. Projections of numerical
solutions5 of the two-dimensional Navier-Stokes equations
on the two-dimensional phase space (/EI, /E;) are plotted
is the kinetic energy in that part

k .
of the flow that depends on x 1like elkax. Orbits of

in Fig. 2. Here E

solutions with initially large energies do not follow simple



curves. The time-dependent evolution of two-dimensional
fldWs evidently requires a multi- (iikgly infinite) dimensional
phase space. Thus, Landau-—Stuart-—Watson6 nonlinear
" stability theory, which gives evolution equations of
the form - (2) can not be valid away from the neutral surface.’
Several other features of Fig. 2 are noteworthy. First,
the two orbits in the lower left hahd corner illustrate the
" existence of a threshold eﬁergy (near that of the LB
solution) belbw which disturbances decay. Second, solutions
with energies less than that of the UB solution (indicated
by the point marked 'steady solution' in Fig, 2) can overshoot
the UB energy by factors of 4 or more. Third, and most
importantly, typical solutions quickly evolve to a state
within a band of quasi-equilibria and, then, only very
'slowly approach the steady UB solution. The time scale
for initial adjustment to a quasi—equilibtium state is
of order the eddy circulation time 1/VE, (i.e., of
order 10) while the time scale for approach to the equilibrium
~ state is of order the diffusion time 1/v 1(ile,,'ofﬁ 
order 1000 - 10000). In the quasi-equilibria, the spanwise
vorticity must be nearly constant on streamlinesg,so that

equilibrium is achieved by diffusion of vorticity. In fact,

—

vorticity can vary by at most O0(v) along interior streamn-
lines of the equilibrium flows. WNearby flows must have the
same property implying the existence of quasi-equilibria

evolving only on a diffusive time scale.

The quasi-equilibria are the basis of our transition
mechanism in plane Poiseuille flow as direct numerical

solution of the Navier-Stokes equations9 shows that they
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are strongly unstable to infinitesimal thfee—dimensional
disturbances. In Fig. 3, we plot the evolution of (initially
small) three-dimensional disturbances superposed on finite-
amplitude two-dimensional motions. Evidently, the three-
dimensional disﬁurbances quickly achieve a form that grows
" exponentially in time for R >1000. The growth rate of the
three—dimensional.disturbances is rapid with their amplitude
increasing by a factor of about 10 in a timé of 10.
This short time scale for subcritical three-dimensional
growth should be contrasted with the long time scale of
order 1000 for evolution of supercritical Orr-Sommerfeld modeé.2
There is strong evidence that this instability is a
physically relevan£ one in that it is fairly inéensitive to
initial conditions and has small threshold energies, It is
necessary to distinguish here between this instability and
‘the ensuing transition to turbulence. If the two-dimensional
flow persists sufficiently long for the three—dimensional
perturbations to attain a finite amplitude, direct numerical

simulation has shown9

that the resulting three-dimensional
flow quickly develops a turbulent character with strongly
non-periodic behavior. Thus to 'predict' transition one

must know the initial two-dimensional and three-dimernsional
energies as well as their respective time scales. For instance,
the most dangerous three dimensional instability for given

two-dimensional energy is not necessarily the most likely to

force transition if the two-dimensional state is outside the
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band (in wavenumber) of quasi-equilibria, It is possible to
use our methods to construct a neutral surface for transition
in any given (presumably large) parameter space., However,
we confine attention here to demonstraﬁing that our mechanism
predicts transitional Reynolds numbers iﬁ accordance with
experiment,

The exponential growth illustrated in Fig. 3 suggests
‘that a linear instability mechanism is.involved}0 Assuming
a flow of the form

> > ->
v(x,t) = F(x-ct,z) + € RelG(x~ct,z)e , (3)

ct+iBy]
substituting into the Navier-Stokes equations,vand linearizing
with respect to g,‘ a linear eigenvalue problem for
results. The Galilean transformation to a reference frame
moving with the phase speed c eliminates time-dependent

- coefficients, so the problem is separable in t. The resulting
eigenvalue problem has been solved numerically using Chebyshev
polynomial expansions in 2z and highly truncated Fourier

- - - . ’
series expansions in x for F and G. In Fig. 4, we plot

the maximum growth ratél:, Re(0), vs the spanwise wavenumber
B for R = 4000, o = 1,25. The results of direct numerical
simulations (cf. Fig. 3)‘are also plotted in Fig. 4. Evidently,
the large growth rates observed in the direct numerical simulations
can be exvlained by this linear eigenvalue problem.
Note that the linear theory presented above can be

extended to Reynolds numbers below 2900 by freezing the
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quasi—equilibria which evolve very slowly compared to the

rapid exponential growth of the three-dimensional perturbations.
For R:ziOOO, the quasi-equilibria decay sufficiently slowly
that three-dimensional perturbations can grow, overwhelm the

two~-dimensional flow, and break down to turbulence.

The rapid growth rates described above are due to the

-combined action of vortex stretching by the nearly inviscid

two-dimensional steady motion F  and tilting of the vortex
linés of F by the perturbation G. By itself, vértex
stretching by bg can not give exponential growth rates
because of the two-dimensional anti—dynémo theorem.12
Detailed flow visualizations of the insﬁabilities described
here will be given elsewhere. It will be shown that
three-dimensional perturbations grow on a time scale of

order 1/VE which must be shorter than the decay

2-D’

time of the two dimensional motion for the instability

to be effective. The sharp cutoff in growth rate Re(o) for

small B observed in Fig. 4 reflects a threshold of streamwise
vorticity for stretching to persist.

Direct numerical simulations9 of transition in plane
Couette flow show that while there is no evidence that
equilibria of the form (1) exist, the three-dimensional
instability process outlined above is still effective down to
Reynolds numbers of order 1000. While there are no quasi-

equilibria in plane Couette flow that evolve on purely

diffusive time scales, the decay rates of finite-amplitude

two-dimensional disturbances are still several eddy circulation times.
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This implies that the threshold three-dimensional

energies in plane Couette flow are somewhat larger than in

plane Poiseuille flow. However, the resulting instability

is at least as strong and turbulence quickly ensues.
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Figure Captions

Fig. 1.

A subcritical (E,o) élice of the neutral surfaée for
plane Poiseuille flow at R = 4000. The stability of
solutions is indicated by the arrows. The behavior shown

in this plot is typical for 2900 <R <5772.

Fig. é.

A phase portrait of disturbances to laminar plane
Poiseuille flow in (/EI,/E;) séacé ét R = 4000,0¢ = 1.25.
The dots, equally spaced by 1.25 in time, indicate the
evolution of perturbations from initial conditions proportional
to the least stable Orr-Sommerfeld eigenfunction at this

(a,R). Note the existence of a band of quasi-equilibria.

Fig. 3.
A plot of the growth of three-dimensional perturbatibns
on finite-amplitude two-dimensional states in plane

Poiseuille flow at (a,B) = (1.32, 1.32). Here E2—D is

the total energy (relative to the laminar flow) in wave-

numbers of the form (na,0), while E3—D is the total

energy in wavenumbers (no,B). For - R > 1000 we obtain
growth and for R = 500 decay. The growth rate of the
three-dimensional disturbance amplitude at R = 4000

is about 0.18 (~VE ) and depends only weakly on R

2-D
for larger R. The initial conditions are superpositions
of the laminar flow, a [large (EZ_D=O.O4)] two-dimensional

Orr-Sommerfeld mode with wavevector (a,0) and a [very
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sinall "EB-D =’ 10“16)] {:hreee«dimensional trancaverac
Orr-Sommerfeld mode with wavevectors (0,8).

Fig. 4.

A plot of the growth rate o of three-dimensional
'perturbations‘as a function of B aﬁ .R = 4000, o = 1.25.
Note the good agreement betﬁeen the linear calculation and
the 2-mode direct simulations. Increasing the number of
retained modes in x incfeases the growth rétes. However,

the error in the 2-mode model is not large.
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Fig. 3. A plot of the growth of three-dimensional
perturbations on finite—amplitude two-dimensional

states in plane Poiseuille flow at (a,B)=1(1.32,1.32).
Here Ejy_p is the total energy (relatiwe to the laminar

flow) in wavenumbers of the form (na,0), while E3_p
is the total energy in wavenumbers (na,8). For
R >1000 we obtain growth and for R = 500 decay. The

—ngwth rate of the three-dimensional disturbance
amplitude at R = 4000 is about 0.18 (~VEp_p) and
depends only weakly on R for larger R. The
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dimensional Orr-Sommerfeld
mode with wavevector

(0,,0) and_alvery small
(E5_p=10"16)] three-

dimensional transverse
Orr-Sommerfeld mode
with wavevector (0,8).




T0T

0.2

Rego

O

— LINEAR THEORY (2 MODES IN X)

©

'DIRECT SIMULATION (2 MODES IN X)

8 DIRECT SIMULATICN (8 MODES IN X)

# 3

‘@\

Fig. 4. A plot of the growth raﬁe o of
three-dimensional perturbations as a function
of B at R = 4000, a = 1.25. Note the good

- agreement between the linear calculation and

the 2-mode direct simulations. Increasing the

number of retained modes in x increases the

growth rates. However, the error in the 2-mode
model is not large.




VI. Finite Amplitude Stability of Axisymmetric Pipe Flow

ABSTRACT

The stability of pipe flow to axisymmetric disturbances
is sfudied by direct numerical simulation of the incompressible
Navier-Stokes equations., There is 10 evidence of finite-
amplitude equilibria at any of the wavenumber/Reynolds
number combinations investigated, with all perturbations decaying
on a time scale much shorter than the diffusive (viscous)
time scale. In particular, decay is obtained where
amplitude~expansion perturbation tec;niques predict

equilibria, indicating that these methods are not valid

away from the neutral curve of linear stability theory.

102



D

1. INTRODUCTION

It is generally agreed that pipe Poiseuille flow
(also called Hagen—-Poiseuille flow) is linearly stable to
all disturbances (both axisymmetric and non-axisymmetric)
at all Reynolds numbers (Sexl 1927, Lessen et al 1968,
Davey & Drazin 1969, Metcalfeg Orszag 1973, Salwen et
al 1980) . Therefore, the explanation of the observed
transition to turbulence in this flow requires finite-
amplitude instabilities. |

Finite-amplitude stability analyses of pipe flow
have so far been restricted to axisymmetric disturbances
(Davey & Nguyen‘l97l) and even these results are not
without controversy (Itoh 1977, Davey 1977). 1In this
paper, we use spéctral methods to investigate numerically
the behavior of finite-amplitude axisymmetric disturbances in
pressure-driven pipe flow. The basic question concerns the
existence of finite—amﬁlitude equilibrium states of this
flow. If such states do not exist then pipe flow is stable

to all axisymmetric distrubances. Available finite-

T amplitude analyses predict equilibria, however they are

in disagreement over both results and methodology.
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2. NUMERICAL METHODS

The axisymmetric incompressible Navier-Stokes

equations are, in rotation form,

ju _ _ a; , 4 1,2 32
Ix
ot dr R e e LA
r IxX
3
o (ru) + -5"’? (rv) = 0 (3)

where u and v are the velocities in the x and r
directions, respectively, D2 = % 3/3r (r3/3r), and
w = 3dv/3dx -3u/dr is the azimuthal vorticity.

The boundary conditions on the velocities are
u, v/r bounded (r = 0), u,v =0 (r = 1) (4)

"R is the Reynolds number based on pipe radius

and center-line velocity. The constant pressure gradient
term is assumed to be that éé'the laminar flow, namely
4/R, and II’is the disturbance pressure head.

We discuss briefly below four features of our numerical

methods: spectral representation; time-stepping;

operator inversion; and initial conditions. The major
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difference between the present pipe flow calculations

and our plane channel flow simulations (Orszag & Xells
1980; Patera & Orszag 1980) is that variable-coefficient
equations must now be solved implicitly, whereas

in planar geometry only constant coefficient equations

require implicit solution.

The velocities are expanded as

P : .
u(x,r,t) = I U(n,p,t)e* ™1 (r) (5)
In|<N p=0 . 2p
P ionx
vi(x,r,t) = ln!<N pz-o v(n,p,t)e T2p+]_(r) (6)

where the Chebyshev polynomials Tq(rfaie'aefinéémg§av

Tq(cos 8) = cosqgt®

The even (odd) nature of u(v) follows naturally from the

axisymmetry of the problem. Boundedness at the origin
~'is "then automatically imposed, Periodic;boun&érﬁ:'

conditions are applied in x with periodicity interval

27/0.
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A fractional time stepping method (Orszag & Kells
1980) is used, each full step consisting of (i)
a non-linear step, (ii) a pressure step, and (iii)
a viscoﬁs dissipation step. For the first fractional

step a second order Adams-Bashforth method is used:

ﬁn+L un + At (% vnw n _ %Vn—l n-1

vn+1 vl o+ At (—%u w + %u w )

where the superscript refers to time step. The non-
linear terms are calculated efficiently using transform
methods and collocation (pseudospectral) technigues
(Gottliéb &'6fszag 1977). Products ére évaiuaﬁéd in
physical space while derivatives are calculated in
”f?peét;al spacé,A'Tfénéforﬁétiéﬁé BétWééh thé'EQoru,

“fépfeééntaéiéﬁé aféﬂdoﬁe uéing extensions of the
fast Fourier transform algorithm. In the remainder of
- thig Sectiecn it is assumed that the velocities are in
mixed representation, Fourier in x but physical in
r. The axial wavenumber of a Fourier mode will be

denoted by Y.
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Next, incompressibility is imposed with the

pressure step

A n+l ~n+1

u =u - iyAtl* (r<1) (7)

§ Ll o gntl -Ataa—n*— (r<1) - (8)
r

yra® e L0t = 0 (e 1) | (9)

R n+l

=0 (r=1), (10)

. *
where we write 1L, rather than I to indicate that the
pressure obtained here is an intermediate result. Egqns. (7)-(10)

’ *
can be combined to give a single equation for I ,

2 2 * . An+ P A

0 - yHr ¥ = oty % 'a—r(rVn+l) (r <1) (11)
*

ST

3r=0'(r=l-)° "' (12)
Note that p* 1is expanded in an even serics of Chebyshev

polynomials like (5). The solution of (11) -€(12) 1is

discussed below.
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In the final fractional step, viscous effects are

included using the Euler backward scheme

n+l
u

n+1l
u

n+1l

n+1

The overall

because the

an+l + %; (D2 —y 2)un+l (r<rl) (13)

0 (r=1) (14)

Gn+l + _A_RE (D2 _ _1_2_ _ Y2)Vn+]_ (r <1) (15)
r : :

0 {r = 1). (16)

schems is ouly first order accurate in time

viscous and pressure operators do not commute.

Higher order accuracy in time may be obtained by extra-

polation methods.

The implicit parts of the procedure given above all

involve solution of an equation of the form

L - 5o =£f (r<l) (17)
ap + b oL=0 r=1 P (18)
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for each Fourier mode, where I 1is a second order
(Laplacian) operator in r, 82 depends only on the
x-Fourier index (not r), and a and b are constants
independeﬂt of Fourier mode. We discuss briefly here
the discretization of L and the method of inversion.
For planar geometries L can be written as a tri-
diagonal system using a Chebyshev tau-method (Orszag
and Kells 1980). This system can then be inverted in
0(P) operations for each x-Fourier mode. The
curvature terms introduced by the cylindrical geometry
destroy the tridiagonal property of the tau-method
matrix, and collocation then becomes more attractive due
to the ease with which variable coefficient problems
can be handled.

_To solve the full matrix equations resulting from
the collocation approximation of (17) - (18), an
eigenfunction solver is used that reduces the operation
~count From 0(P3) to ’O(PZ)' while only requiring the
storage of one PxP matrix for given (L,a,b). More
precisely, we diagonalize the collocation approximation to _

L as

The solution to (17) - (18) <can then be written as
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- =1
¥ 1 (A-BZI) Y £

©
il

The diagonalization (independent of Fourier mode) is
done in a pre-processing stage.
Finally, the initial conditions for the‘runs

presented here are of the form

z(x,r,t = () = (l—r2)§ + A $L(x,r)

where 3L s an eigenfunction of the fourth-order
linear stability equation obtained from (1) -~ (3) by
assuming a solution of the form

v = (1-rdH% + ep(r) et xwtlo
and linearizing with respect to €. The magnitude of the
perturbation is characterized by its energy relative to
that of the unperturbed flow ¢

1

E= 12 (u? + v?)r . dr (19) »
5 ‘

The details of the linear problem are well-documented

(Lessen et al 1968, Davey & Drazin 1969, Salwen et al
1980) and‘will not be discussed here. The numerical
procedure used to determine the eigenvalue w and
eigenfunction ¢ (r) for given R, a ~is similar to that

described by Orszag (1971) for planar geom;tfies, except
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that collocation rather than the tau-method is used.

3. RESULTS
. Before invesfigating finite-amplitude behavior it

is necessary to confirm that the direct simulation

gives decay rates and phase velocities in agreement

with those predicted by linear theory. The results

of two such tests are summarized in Table 1, where

it is seen that the code adequétéiy resolves both center

and wall modes at modest time steps, 6 (even without

using extrapolation methods to redvce the first order

error in time).

The results of linear theory can also be used to
test whether interactions between a primary mode and
its harmonic are accurately simulated. For pipe
flow, a center mode with wavenumber 0 nearly resonates
with its harmonic in the sense that the phase speed of
the mode with wavenumber 20 is very close to that
of the primary. If one assumes they resonate exactly
(i.e. w = 2w

2r lr)’
amplitude equation of the form

the harmonic will obey a forced

dA 2w, .t
2 _ 2 1i
— = iAZ + O(Al)e

5t L'Ju2
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and thus A2 grows secularly in t for short times and

attains a maximum at

. in(-2w..)-n(-w,.)
t* - 1i 21 (20)

“2wyg oWy

As the modes are not exactly phase-locked, we would expect
the actual maximum to occur at t* <t;. This behavior

is verified in Fig. 1 by a plot of t*/t; at a =1

for various Reynolds numbers. The maximum deviation
between (20) and our direct simulations is -3%.

Next, we study finite-amplitude disturbances
predicted to be dangerous by the method of false problems.
Davey & Nguyen (1971) find that the two disturbances
tested above at very small amplitude (see Table 1) have
threshold (unstable equilibrium) energies (19) of
E = 0.003. The method of Itoh (1977) as applied by
Davey (1978) indicatés that the center mode should
_decay at finite amplitude, however it too predicts a
small-amplitude equilibrium state for the wall mode,

To test these theoretical results, éhe.samé series

of runs reported in Table 1 Qere repeated except that the
axial and radial resolution was increased, the time
integration was taken to a final time of T = 20 rather
than T = 10, and the initial.energies of the disturbance

were taken to be 0.0l. The results for the wall mode
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and center mode are shown in Figs, 2 and 3 respectively,
as plots of the logarithm of the primary and secondary
energies as a function of time. There is apparently

no evidence of equilibria. Runs at lower and higher
initial energies (e.g. E=~0,04) decay in a similar
manner.

The lack of equilibria reported above does not
preclude their existence for other Reynolds number/
wavenumber combinations. However, in a variety of runs,
we have found no finite-amplitude steady-states. The
results of a typical run at‘R=w4000} a =1.,0, w=0.3783 -
i 0.1025, are plotted in Fig. 4. From Fig. 4 we
infer that the disturbance at R = 4000 decays in a
time very short compared to a diffusive time scale, and
is therefore consistent with the absence of equilibria
(Orszag & Patera 1980).

The time scale for decay of finite-amplitude axi-

' symmetric states is central to an understanding of three-

dimensional transition. The three-dimensional instability
mechanism leading to transition in plane Poiseuille and
 Souette flows (Orszag § Patera 1980) develops on a time
scale of order 1//E, where E is the energy of the two-
dimensional disturbance. For the disturbance plotted in Fig. 4,

'1/V/E 1is significantly shorter than theé timé ‘séale on which —— -

the perturbation decays.
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Thus, it seems that the instability we found in planar
channel flows may be relevant to transition in pipe
flow as well. This possibility will be investigated
further in & later paper in which the behavior of
non—axiéymmutric disturbances to decaying axisymmetric
States' will be considered.

Our results indicate that the method of falsé
problems is not a valid procedure for investigating
finite~amplitude axisymmetric perturbations to pipe
flow. We do not attempt a critique of these methods
here exceprt to emphasize a point made by Hexrbert (1977).
Herbert commented that the retention of only the first
term in the amplitude expansion of the frequency without

knowing the convergence properties of the series can lead

~to incorrect conclusions, especially in cases (such as

pipe flow and plane Couette flow) where there is no linear
neutral curve. The radius of convergence of the

amplitude expansion may simply be too small to predict
equilibria. For example, numerical simulations of plane
Couette flow (Orszag & Kells 1980, Patera.& Orszag 1980)

do not confirm the existenée of two-dimensional equilibria
prediéted.by Davey & Nguyen (1971) on the basis of amplitude
expansions. The direct iteration procedure of Herbert
(1977) " bypasses this problem and can predict the existence

of equilibria as well as their threshold energy.
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However, a limited survey of the available phase space
has not yet yielded any finite-amplitude solutions.

We suspect there are none.
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Table 1. Behavior of Linear Modes

Wall Mode Centexr Mode
R 1600. 500.
a 5.8 6.2
Re W 1.5849 _ 5.8852
Im ® - -0.5396 -0,3917
, -10 -10
Perturbation Energy 1x10 1x10
Spatial Resolution
(20> (P+1)) 8x33 | 8x17
At 0.005 0.01
Final Time, T 10. 10.
Computed Re-w 1.5836 5.9146
Computed Im w - ~0.5410 . -0..3876
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FIGURE CAPTIONS

Fig. 1 The ratio of the time at which the harmonic
attains its maximum to the time predicted by linear theory
(assuming parfect phase-locking) is plotted as a function
of Reynolds number when o = 1. The actual (computed)

time is less than the predicted linear théory time

because the real frequency of the harmonic is not

exactly twice that of the primary.

Fig. 2 Decay of a wall mode at R = 1600, o = 5.8 from

an initial energy ( E = 0.01) 1larger than tﬁe equilibrium
value predicted by the method of false problems. Higher
enerqgy disturbanées also decay. Here E 1is the energy

of the disturbance relative to the mean flow [defined

in (19)]. Here N = 8 and .P = 64 in (4)- (5).

The accuracy of tﬁis and other runs was tested by changing

N, P and the time step At.

Fig. 3 Decay of .a center mode at R = 500, o = 6.2 from
an initial energy (E = 0.01) larger than the equilibrium
value predicted by perturbation theory. Here N = 8 and

P = 32 ‘in (4)- (5).
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Fig. 4 Decay of a wall mode at R = 4000, o = 1. The
decay occurs on a time scale much shorter than the
diffusive scale indicating the absence of equilibria.

Here N =8 and P = 32 in (4) - (5).
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